
UCRL-JRNL-202336

Sequencing Needs for Viral
Diagnostics

S. N. Gardner, M.W. Lam, N. J. Mulakken, C. L.
Torres, J. R. Smith, T.R. Slezak

February 13, 2004

Journal of Clinical Microbiology



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



1

Sequencing Needs for Viral Diagnostics 

Shea N. Gardner1*, Marisa W. Lam1, Nisha J. Mulakken1, Clinton L. Torres1, 

Jason R. Smith2, Thomas R. Slezak1

1Computations, and  2Biology and Biotechnology Research Program

Lawrence Livermore National Laboratory, P.O. Box 808, L-174, Livermore, CA  94551

Running Title: Sequencing needs for viral diagnostics

Key words: pathogen detection, sequencing for viral diagnostics, variola, SARS, Ebola

Number of Words in Abstract 243

Number of Words in Body of 
Text

2542

Number of Tables 1

Number of Figures, each with 
1 part

3

Total Number of Words in 
Figure Legends

203

July 27, 2004

  

* phone: 925-422-4317, fax: 925-422-2133, email: gardner26@llnl.gov



2

Abstract

We built a system to guide decisions regarding the amount of genomic sequencing 

required to develop diagnostic DNA signatures, which are short sequences that are 

sufficient to uniquely identify a viral species. We used our existing DNA diagnostic 

signature prediction pipeline, which selects regions of a target species genome that are 

conserved among strains of the target (for reliability, to prevent false negatives) and unique 

relative to other species (for specificity, to avoid false positives). We performed 

simulations, based on existing sequence data, to assess the number of genome sequences of 

a target species and of close phylogenetic relatives (“near neighbors”) that are required to 

predict diagnostic signature regions that are conserved among strains of the target species 

and unique relative to other bacterial and viral species. For DNA viruses such as variola 

(smallpox), three target genomes provide sufficient guidance for selecting species-wide 

signatures. Three near neighbor genomes are critical for species specificity. In contrast, 

most RNA viruses require four target genomes and no near neighbor genomes, since lack of 

conservation among strains is more limiting than uniqueness. SARS and Ebola Zaire are 

exceptional, as additional target genomes currently do not improve predictions, but near 

neighbor sequences are urgently needed. Our results also indicate that double stranded 

DNA viruses are more conserved among strains than are RNA viruses, since in most cases 

there was at least one conserved signature candidate for the DNA viruses and zero 

conserved signature candidates for the RNA viruses.
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Introduction

Sequencing pathogen genomes is costly, particularly when one considers the scope 

and number of organisms and strains that could be sequenced. We face challenging 

decisions as to how limited sequencing resources should be allocated. We have built a 

system to evaluate sequencing needs using simulations and random sampling of existing 

sequence data. When some sequence data is already available, the results indicate whether 

additional target species genome sequences or genome sequences of close phylogenetic 

relatives (i.e. near neighbors, abbreviated as NNs) are required to predict high-quality DNA 

signatures for target detection. In addition, patterns observed in existing sequence data for 

classes of viruses (single- or double-stranded, RNA or DNA, positive or negative sense) 

may guide initial investments for unsequenced pathogens. Since we have built a dynamic 

system, not only a one-time analysis, it is possible to do real-time, automated evaluation 

concerning whether additional target or NN sequencing may still be warranted or if 

diminishing returns may have been reached. This is the first such system, to our knowledge, 

designed to address these issues. The system applies Monte Carlo simulation, which is a 

general method using stochastic techniques, based on the use of random numbers and 

probability statistics.

By a DNA diagnostic signature, we mean two primers and a probe, suitable for a 

TaqMan assay, that is sufficient to identify the given target species, uniquely distinguishing 

it from other species. Although we limit our discussion here to viral diagnostic signatures, 

other avenues of our system address similar questions for protein signatures, forensic DNA 

signatures, single-gene versus whole genome sequencing, and comparisons of draft versus 
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finished sequence data, for bacteria as well as for viruses. Future papers will discuss these 

results.

Currently, we have the only fully automated DNA diagnostic signature prediction 

pipeline, described in detail elsewhere (2-4, 9). This pipeline selects regions of a target 

genome that are both conserved among strains (to prevent false negatives and low 

reliability) and unique relative to other species (to preclude false positives and low 

specificity). We use multiple sequence alignment algorithms to generate a consensus 

sequence of conserved bases among strains. We have assembled an approximately 1 Gb 

database of viral and bacterial full-genome sequences for assessing uniqueness. Suffix tree 

algorithms facilitate the creation of a “consensus+uniqueness gestalt”, or simply the

“gestalt”, of sequence fragments unique in the target consensus relative to everything in the 

database.(5, 9) In this gestalt, all bases that are not conserved and/or not unique are 

represented by dots, and the remaining sequence fragments may be mined for diagnostic 

signatures. The DNA signature pipeline then identifies regions suitable for a platform-

specific assay; in most cases we predict TaqMan signatures composed of two primers and 

an internal probe. When these signature candidates are destined for laboratory screening, 

they undergo rigorous in silico screening against the Genbank nr database (a huge sequence 

database ,(1)), and, when appropriate, human genomic data, to guard against cross-reaction 

with non-target organisms. In addition, signatures to be screened in the laboratory are 

annotated as to whether they are intergenic or land on genes, particularly genes of interest 

such as those associated with virulence. Our pipeline is limited by the amount of sequence 

data available. 
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Signatures predicted using our DNA signature pipeline are in daily use by 

BioWatch and BASIS, the US Centers for Disease Control (CDC), a multi-state task force 

testing for animal diseases, and other US federal agencies (6-8). We are actively developing 

signatures for and in collaboration with a number of organizations, including the CDC, 

USDA, FDA, USAMRIID, and others. Our TaqMan-based assays for variola (smallpox) 

tested best in BSL-4 laboratory screening, and are in daily use, and our severe acute 

respiratory syndrome (SARS) assays are performing well in screening at USAMRIID.  

These accomplishments uniquely qualify us to assess sequencing needs for diagnostic 

signature development. 

For assessing sequencing needs for diagnostic DNA signatures, we ran more than 

30,000 Monte Carlo simulations with random samples of target and NN sequences, 

summarized in Table 1. The goal was to estimate the minimum number of sequences 

required to approximate the number of TaqMan signature candidates predicted when all 

sequence data available is used. That is, how much do we over-estimate the number of 

conserved, unique signature candidates when we only have a fraction of the data compared 

to when we use all of the available data? Which are more valuable, target or near neighbour 

sequences, for pruning the list of signature candidates to those most likely to be conserved 

and unique, and thus likely to succeed in screening?

Methods

We began our analyses with a pool of target strain sequences and a pool of NN 

sequences, and randomly selected s samples of size t target sequences and n NN sequences 

from the target and NN pools, respectively. Each sample of organisms was run through our 
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DNA signature pipeline, with signature prediction based on conservation among the t target 

strains and uniqueness relative to our 1 Gb database minus those NNs in the NN pool that 

were not chosen in that sample. Thus, for each sample, the number of signature candidates 

was predicted as though we had only t target and n NN sequences, as well as the rest of the 

less-closely related organisms in our database that are not considered NNs. We then 

assessed how much sequence data was required to approximate the number of signature 

candidates c that were predicted when the full data set (all target and NN sequences) was 

analysed. Using the full data set will yield the fewest signatures, because lack of 

conservation or uniqueness will winnow away all unsuitable candidates.  

To complete the process outlined above, we developed a dynamic system, including 

a database for storing and querying results, a web-based system for displaying results, 

statistical programs to summarize results and create plots, and a process manager to oversee 

all of these features. The process manager automatically schedules parallel Monte Carlo 

runs, manages and maintains a stable load on the computer system, and performs input-

output operations from the database. To date, more than 30,000 runs of the DNA signature 

pipeline have been run, requiring approximately 15-20 minutes each for most viruses, for 

the examination of 20 viruses. Even with a 24 CPU Sun server, we are limited by 

processing time to running s=10 samples for each combination of t and n, generating 

hundreds to thousands of DNA signature pipeline runs for each target organism.

We analysed species for which at least 4 sequenced complete genomes were 

available, primarily from NCBI Genbank. In most cases, we performed our analyses at the 

species level. NN pools for our Monte Carlo analyses were selected based on the 

relationship between the target set and close taxonomic relatives, or neighbors, elucidated 
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by the NCBI taxonomy structure. NNs were organisms that were in the same family as the 

target species. For analyses at the level of sub-species instead of species, anything in the 

same genus as the target sub-species was considered a NN. In other words, any organism in 

the same clade as the target species or sub-species, as given by going up two levels in the 

NCBI taxonomic structure, was considered a NN. 

Range plots illustrate the span of predictions generated by different random samples 

of genomes (Figures 1-3). Along the y-axis, whole numbers represent the number of target 

strains t and the incremental values between the integers represent the number n of NN 

genomes. Outcomes indicating the ability to generate signature candidates are plotted along 

the x-axis as a horizontal line spanning the range of predicted values for the s random 

samples. 

The 75% quantiles of the samples are plotted. If a random sample of t target strains 

and n NN strains were sequenced, there would be a 75% chance that the quality measure 

for that sample would be less than or equal to the 75% quantile mark. The quality measure 

shown here is the number of TaqMan signature candidates. The expected outcome is a 

reduction in the number of signature candidates that are generated as non-unique and non-

conserved candidates are eliminated with increases in the number of target and NN 

sequences used to predict the signatures. One may also plot the fraction of the target 

genome that is conserved among strains and unique relative to other species as the quality 

measure (not shown). This gives a more general estimate of the region that may be 

available for development of any DNA-sequence-based detection assay, regardless of the 

technology platform. 



8

These range plots enable us to examine the entire span of outcomes on a relatively 

simple graph and to rapidly determine the value of target and NN sequences. Contour or 

topographic plots, traditionally used for complex data with two independent variables, were 

uninformative in preliminary analyses, since only one quantile point for each (t,n) pair, and 

not the entire range, could be displayed at once.

Results

Analyses indicate that lack of conservation, more than lack of uniqueness, limits our 

ability to find species-specific, species-wide TaqMan signatures for most viruses, and thus 

more target than NN sequence data is required (Table 1). The range of the number of 

TaqMan signatures for random sub-samples of plum pox virus and NN genomes remains 

the same for a given target set size, regardless of the number of NNs, illustrated by the 

rectangular, stair-stepped pattern of horizontal lines in Figure 1. That is, additional NN 

genomes do not result in a reduction in the number of signature candidates, as shown by the 

range of the number of signature candidates that is the same whether there are zero or 10 

NNs: For example, the range of the number of signature candidates indicated by the 

horizontal range line at y=2.0, using 0 NNs in the calculations, is the same as the range of 

the number of signature candidates at y=~2.8, including 10 NNs in the calculations, in 

Figure 1. In contrast, as the number of target sequences increases, the number of signature 

candidates decreases: Most random samples of 2 target genomes give over 100 signature 

candidates (e.g. range line at y=2.0), while most random samples of 4 target genomes give 

fewer than 25 signature candidates (e.g. range line at y=4.0). This pattern indicates that 
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multiple target sequences, but not NNs, assist in identifying the highest quality signatures. 

Most of the viruses had results qualitatively similar to those for plum pox virus.  There are 

four notable exceptions discussed below.

The first two exceptions are variola virus and vaccinia virus. For variola and 

vaccinia, NN sequences are particularly essential to identify unique signatures (Figure 2). 

As the size of the NN set grows, regardless of the number of targets, the range of the 

number of signature candidates shrinks and moves toward fewer signatures. This triangular 

pattern suggests that NN sequences factor prominently in identifying regions of the genome 

that are unique to the target species. In fact, conservation among strains of variola and 

among strains of vaccinia enabled us to generate a reasonable list of signature candidates 

with only a single target sequence, as long as 4 NN sequences were available to eliminate 

non-unique regions (Table 1). NN sequences also facilitated signature generation for other 

double-stranded DNA viruses, but not nearly to the extent as for variola and vaccinia. 

Human adenovirus B was the only double-stranded DNA virus for which NNs did not 

improve signature prediction. Thus, there is a general pattern that NN data aids in signature 

prediction for double-stranded DNA viruses, but this is not a rule. 

The two other exceptional cases are SARS and Ebola Zaire, for which we need 

close NN sequences, but no more target sequences (Figure 3). For both these species, 

additional sequences after the first target provide no guidance as to signature prediction. 

Because sequenced isolates are so closely related, any single target provides virtually the 

same information for the purpose of generating detection signatures. The second point 

clearly illustrated in Figure 3 is that there are no close NNs currently sequenced to reduce 

the pool of candidates. Currently, we have a severe need for sequence from close NNs of 
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SARS and Ebola Zaire to narrow the pool of signature candidates to those least likely to 

generate false positives in the field. For Ebola Zaire, neither Ebola Reston nor Marburg 

virus, currently the most closely related organisms for which we have sequence data, are 

sufficiently similar to rule out signature candidates that might cross-react in the field. 

Discussion

Although analyses presented here illustrate that it may not be possible to find a 

single, species-wide, species-specific signature for many viruses, other analyses show that 

it is often possible to find a single TaqMan signature with a limited number of degenerate 

bases, and it is always possible to find a set of TaqMan signatures that will, in combination, 

detect all strains (4). These analyses indicate that sequencing three or four strains of most 

RNA viruses will highlight the regions that are least conserved, and thus inappropriate 

regions for DNA-based detection signatures. The remaining, more conserved sequence 

regions may then be mined for detection signatures, whether a single signature or several 

signatures are required to detect all strains. In some cases where strains cluster into types, 

the distinction between types and species may be subjective along a continuum. In these 

situations, type-specific signatures may be a more appropriate goal than species-specific 

signatures, particularly if types differ in virulence.

NN sequences aid more in signature prediction if they are closely related to the 

target. This is the case for variola and vaccinia, due to the low mutation rate for Orthopox

viruses and the similarity of species in this genus. We are in the process of analysing 

sequencing needs to develop diagnostic signatures for bacteria, and preliminary results 

indicate that variola and vaccinia may be similar to bacteria, with their much larger 
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genomes, than to other viruses in terms of the requirement for NN sequence data. Indeed, 

the variola and vaccinia genome sequences are an order of magnitude longer than those of 

the other viruses with sufficient sequence data for our Monte Carlo methods. Conservation 

does not depend on sequence length alone, however, as illustrated by JC virus, the shortest 

of the double-stranded DNA viruses we examined at approximately 5000 bp, and with a 

huge number of sequenced genomes (Table 1). Although no single signature was present in 

all genomes, other analyses (data not shown) indicate that there are 23 TaqMan signature 

candidates that are shared among at least 75% of the 187 JC genomes. Thus, for this short 

virus, there is relatively high sequence conservation. In summary, our results indicate that 

double-stranded DNA viruses are more conserved among strains than are RNA viruses, 

since in most cases there was at least one conserved signature candidate for the DNA 

viruses and zero conserved signature candidates for the RNA viruses.

Sequences for SARS and Ebola Zaire are unusually conserved compared to other 

RNA viruses because all the sequenced isolates originate from a geographically limited 

area, and have been sampled in a relatively short period of time, thus leaving short 

opportunity for strain divergence. With time and geographic isolation, strain diversity will 

become more important, but at this time no further sequencing of SARS and Ebola Zaire 

isolates are necessary for developing diagnostic signatures for these species. Instead, 

sequencing of close phylogenetic relatives of these species is urgently needed. 
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Figure Legends

Figure 1

Range plot for plum pox virus, displaying results typical of many viruses. To discriminate 

samples in which zero NNs were used, the range is drawn as a horizontal grey line, and 

when n>0, the range is drawn as a black line. The best estimate of the true value is the 

quality measure determined using the entire target and NN pools, and is represented by a 

vertical black line. This best estimate plus a constant c=20 is at the location of the vertical 

dashed line, and was selected to indicate a reasonable distance from the true answer. The 

75% quantile for each range is shown with a black, vertical tick mark.

Figure 2

Range plot for vaccinia, illustrating that NN sequence information is critical to eliminate 

signature candidates that are not species specific. Three or 4 each of target and NN 

sequences appear to be adequate for prediction of a short list of signature candidates that 

are suitable for laboratory screening. 

Figure 3

Range plot for SARS, similar to that for Ebola Zaire (not shown), illustrates that additional 

target sequence data does not narrow the list of signature candidates. No currently available 

NN sequences are similar enough to winnow the list of signature candidates.
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Table 1: Number of Target and NN Sequences Required for Development of 

High-Quality Diagnostic Signatures. To objectively select a minimum number of target 

and NN sequences required for development of high-quality DNA diagnostic signatures, we 

selected 1) the (t,n) pair with the minimum number of target sequences for which the 75% 

quantile of results from random Monte Carlo simulations was less than or equal to c + 20, 

where c is the number of signature candidates when the full data set is used; and 2) the (t,n) 

pair with the minimum number of NN sequences for which the 75% quantile was less than 

or equal to c + 20. Thus, if only t target strains and n NNs had been sequenced, one would 

have a 75% certainty of predicting no more than 20 poor candidates out of the total 

candidates generated, which would have been eliminated computationally if all currently 

existing sequence data had been used in the predictions. TaqMan signature candidates are 

conserved among all sequenced strains and unique relative to all other bacterial and viral 

sequences in our 1 Gb database of complete genomes, with no degenerate bases present in 

the signatures. 
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Minimize  
Target 

Sequences

Minimize  
NN 

Sequences

Genome 
Structure

Virus Target 
Pool 
Size

NN 
Pool 
Size

t n t n

Number of 
TaqMan

Signatures 
from Full 
Data Set

Variola 14 15 1 4 7 2 <20

Vaccinia 6 29 1 4 4 1 0

Human 
Papilloma 
Virus Type 16

5 113 3 4 4 0 6

Human 
Adenovirus B

6 29 4 1 5 0 3

Double-
stranded 
DNA

JC Virus* 187 32 5 5 8 0 0

Single-
stranded 
DNA

Maize Streak 
Virus 

32 155 1 0 1 0 0

Hepatitis B 424 39 1 0 1 0 0

Human 
Immunodefic-
iency Virus 1

333 66 1 8 2 0 0

Retroid 

Human 
Immunodefic-
iency Virus 2

11 388 2 0 2 0 0

Vesicular 
Stomatitis 
Virus

4 21 3 0 3 0 2

Ebola Zaire 
Virus

5 8 1 0 1 0 167

Single-
stranded  
RNA 
Negative 
Sense 

Marburg Virus 6 7 3 1 4 0 0
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Mumps Virus 12 53 4 7 5 0 2

Venezuelan 
Equine 
Encephalitis

18 29 2 1 3 0 0

Plum Pox 
Virus

5 78 2 1 3 0 14

Human 
Poliovirus 1

22 127 3 1 4 0 0

Human 
Poliovirus 2

9 140 3 4 4 0 0

Human 
Poliovirus 3

4 145 2 0 2 0 0

Severe Acute 
Respiratory 
Syndrome 
Virus (SARS)

50 35 1 0 1 0 85

Single-
stranded  
RNA 
Positive 
Sense 

Foot and 
Mouth Disease 
Virus, type O 

14 120 2 2 3 0 0

*For JC Virus in which c=0, using c+20 required t=10, n=8 for both minimizations, so in 

the table above we increased the threshold number of signature candidates to c+30. 
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Figure 1
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Figure 2
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Figure 3


